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Characterization Method and Simple
Design Formulas of MCS Lines
Proposed for MMIC’s

EIKICHI YAMASHITA, rELLOW, IEEE, KE REN LI, ANp YOICHI SUZUKI

Abstract —The proximity effects between microstrip lines and ground
on monolithic microwave integrated circuits are estimated by using the
rectangular boundary division method. The attenuation constant is calcu-
lated based on a new form of the incremental inductance rule. Micro-
coplanar strip (MCS) lines are then proposed to avoid the proximity
effects. Some results of structural design parameters of MCS lines are
expressed in simple polynomial formulas for CAD,

I. INTRODUCTION

HE RECENT development of monolithic microwave

integrated circuits (MMIC’s) is promising us many
microwave circuit applications with small size, light weight,
high reliability, and low cost. Small size allows the batch
processing of hundreds of circuits per substrate wafer. It is
therefore required that the exact design method or CAD of
circuit patterns on substrate reduce chip area as small as
possible to avoid tweaking.

Microstrip (MS) lines and coplanar waveguides (CPW)

“as shown in Fig. 1(a) and (b) have usually been used as
interconnections between elements on high-dielectric-con-
stant substrates such as GaAs. Pucel has pointed out the
significance of “proximity effects” between the microstrip
conductor and ground conductor on the top surface of the
substrate in connection with circuit packing density in
GaAs MMIC’s, and the lack of any method to estimate the
effects [11, [2].

1t has also been pointed out that the lack of a ground
plane on the top side surface of the microstrip structure is
a considerable disadvantage when shunt element connec-
tions to the hot conductor are required. On the other hand,
if CPW structures are employed, the loss of these struc-
tures would be larger than that of MS lines because of high
current density near strip edges.

In this paper, the proximity effects are first estimated
concerning transmission characteristics. In order to ex-
amine this structure, we extend an analysis method intro-
duced in previous papers [3], [4]. The attenuation constant
is calculated by expressing the incremental inductance rule
in a new and simpler form. We propose, then, the use of
“micro-coplanar strip lines” (MCS lines), which can easily
be used for shunting elements, have the low-loss property
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Fig. 1. Transmission lines for MMIC’s. (a) MS lines. (b) CPW.
(¢) Mustration of proximity effects of MS lines, and also proposed
MCS line structure.

of microstrip lines, and avoid the proximity effects, as the
third choice of transmission lines for MMIC’s. The struc-
tural design parameters of the micro-coplanar strip lines
are expressed in simple polynomial formulas for CAD by a
curve-fitting procedure.

II. RECTANGULAR BOUNDARY D1vISION METHOD

Two classes of the proximity effects defined by Pucel are
the changes of transmission characteristics of MS lines in
the vicinity of a ground plane and a chip edge, respectively
[2]. The accurate estimation of the proximity effects in a
structure of the first class as shown in Fig. 1(c) is now
possible with the use of the analysis method described in
this section. '

Fig. 2 shows the dimensions and four divided regions
with rectangular boundaries to analyze the above proxim-
ity effects. We essentially follow the same steps as the
previous papers [3], [4] except for the setting of boundary
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Fig 2. The dimensions and four divided regions with rectangular
boundaries of MCS lines for the analysis of the structure shown in Fig.
1(c).

conditions. For convenience, we would like to refer to this
analysis method as the rectangular boundary division
method.

Suppose that substrate thickness 4 and strip width w
are small enough compared with wavelength in order to
validate the quasi-TEM approximation. Scalar potentials
as the solutions of Laplace’s equation can be expanded in
Fourier series in each rectangular boundary having two
conductor side walls as follows:

¢1(x? y) = Z AlnSinh(glny)Sin(glnx) (1a)
n=1
Dy (X, p) = dyo(x) + 2 {AanOSh[gzn()’_h)]
n=1
+ BZn Sinh[€2n(y_h)]}Sin(g2er) (1b)
b3(x. y) = dyo(x)+ X {A3nCOSh[€3n<y_h)]
n=1
+B3n5inh[§3n(y_h)]}
sin [£,,(x —d —w)] (1c)
(‘[)4(.‘(, y) = Z A4n Sinh[gétn(b_ y)] Sin(£4nx) (Id)
n=1
where
nw na
S1n - —; gln = 7 (28.)
nw nw
g3»1 = T gtln = 7 (2b)
X d+w+s—x
‘1570()‘)—2 vV $yo(x)=———FV (2)
and A4,,, A,,. B,,. A4, B;,, and A4,, are unknown
coefficients.

In the previous papers [3], [4], we imposed the continua-
tion of potential functions as boundary conditions. In this
paper, however, we impose the following continuation of
the tangential components of electric fields as boundary
conditions. The reason for this choice is the faster conver-
gence of the Fourier series due to a physical relation that
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potentials are the integral of electric field functions:

01(x.h) _ d(x. h
b(uh) dealxh) o
dx dx
091(x, ) _ 09(x,h)
Ix  0x
P h+ 9 Jh+1t
$o(x, A1) ¢y(x ) (0<x<d) (3¢)
Ox dx
doy(x. h+1)  gy(x.h+1)
Ix B ax

(d+wsx<d+w+s).

(3d)

Since £,,, £,,. &3, and §,, are not identical, it is not
possible to derive simple relations among the above un-
known coefficients by solving equations obtained from the
boundary conditions.

The other remaining boundary conditions, that is, the
continuation of electric flux density, is equivalent to the
minimization condition of the total electric field energy

given by
1 99,\* (99,7
2”»//:;V{(3x)+(3y)}dxdy (4)
where ¢, and S, denote the dielectric permittivity and the
cross-sectional area of the region » (v=1,2,3,4). Exact
potential solutions should minimize this total electric field
energy.

When approximately minimizing U, the Rayleigh—Ritz
procedure using A,,, 4,,. B,,, A,,. B;,, and 4,, can be
considered. However, this procedure is numerically ineffi-
cient because of the infinite number of Fourier series
coefficients. Instead, we use boundary tangential electric
fields as trial functions.

Boundary tangential electric field functions are assumed
in the following form:

U:

nMA

Si(x) (O<x<d)
E(x,h)={g/(x) (d+wsx<d+w+s)
0 (elsewhere)

(5a)
fr(x) (O<x<d)
2,(x) (d+w<x
0 (elsewhere).

E(x,h+1)= d+w+s)

(5b)

These are all unknown functions, but they can be related
to the potential functions ¢,(x, y) (r=1,2,3.4) through
the Fourier coefficients. An example is

E\'(X’ h) = Z - Alngln Sinh(glnh)cos(glnx)' (6)

n=1
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Therefore, A4, is given by

{ [ () cos(£1,)

Al" agln Slnh(glnh)
+ /“ w“gl(x)cos(élnx) dx}. (7a)
d+w J

In a similar fashion, other coefficierits are related to
boundary tangential electric field functions as

- [*h(x)eos(£,0) d (7b)

A =
2n d&zn

B,,= mﬂ(—i_)f fa(x)cos(§,,x) dx

y (x)cos(&,,x) dx

2
T dE, tanh (&, 1) /of 1 (7¢)

2

a’+u+s
Ay, =— s—.£3:fd+w g1(x)cosé; (x —d—w)] dx

(7d)

-2
B, =—
o S€3n sinh (53nt)

d+ws
/ g
d+mn

2
+ —_—
sé&,, tanh(&;,1)

(x)cos [£3,(x—d —w)] dx

.fd“w“gl(x)cos[isn(x_d_w)] dx (7¢)

+w

-2
a£4n sinh [5471(1) h— t)

A4n

{f H(x)cos(&,,x) dx

+ fdi'wﬂgz(x)cos(&‘tnx) dx}.

d+

(79)

Now the boundary electric field functions are expressed by
spline functions as

A= L () (52
£ = T paE(x) ()

gi(x) = Z ql,GJ(X)

Jj=

(8¢c)

£r(x) = iqz,q(x) (84)
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where the spline functions are given as

(xz - xl-—l)il(x - xr—l)

(x1<x<x)

Fi(x)= (%,01= %) (%47~ X) (¥, <x<x,4q)
0 : (elsewhere)

(%a)

(x,—x,.) (x—x,_,)  (x_;<x<x)

G/(x): (x/+1_xj)*ll(x‘]+l—x) (x j+1)
0 (elsewhere)

(9b)

and p, and ¢, (/=12 i=0,1,2,---.,my; j=

0,1,2,---,m,) are a finite n umber of newly introduced
spline parameters which act as substitutes for an infinite
number of Fourier coefficients: A;,, A,,, Bayr Asn Bape
and A4,,. The total electric field energy U can also be
expressed by p,; and ¢,;.

Because the strip conductor has the potential V, we have
to impose four additional conditions on the boundary
electric field functions as

Hl=/dfl(x)dx+V=O (10a)

0

H2=/dd++tv+sg1(x)dx—V=0 (10b)
d

H3=ff2(x)dx+V=0 (10¢)
0

H4=fdd:w+yg2(x)dx—V=O. (10d)

Now, we define the functional of this variational problem

as
4

1
J=—U+ Y M\ H,
2 k=1

(11)

in order to minimize the total energy under the above
subsidiary conditions. The minimization conditions for
this functional are

aJ

—=0 (12a)

apy

i (12b)

aqu !

ad 0 12

. (12¢)
(/1=1,2;i=0,1,2,---,my; j=0,1,2,-- -, m,; k=1,2,3,4),

which result in a set of linear simultaneous inhomogeneous
equations of the spline parameters that can be solved on a
computer (see the Appendix). The total energy U is calcu-
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lated by substituting the solution of p, and g, into the
expressions of the Fourier coefficients, and then into the
expression for U. ‘

By equating the capacitance energy expression CV?2/2
and U, we obtain the line capacitance as

2U
C= 177 .
When the dielectric materials are removed from the struc-
ture being considered, the line capacitance is similarly
given by the total energy U, of that case
CO = _2_ .
vV
The characteristic impedance, effective dielectric constant,

and wavelength reduction factor are consequently ob-
tained, respectively, by

(13a)

(13b)

1
Z=——— 14
00/ CC, (142)
C
€r = = (14b)
)
A 1
—= (14c)
Ao €esi

where v, is the light velocity in vacuum [3].

I11I. ATTENUATION CONSTANTS
A. Dielectric Attenuation Constant

When o,, is defined as the conductivity of the dielectric
material in the region », the dielectric attenuation constant
is given by [5]

Zodvffgv(v¢y)2dxdy
e [ (v4,) axay

where v is the velocity of energy propagation. This expres-
sion can be rewritten as

o

(152)

7 U,
=5 Y 7 tan 8,  (neper/unit length) (15b)

where U, and tand, arc the field energy and dielectric
tangent in the region », respectively. ‘
B. Conductor Attenuation Constant

When o, is defined as the conductivity of the line
conductor, the conductor surface resistance R, at high
frequencies is (wpq/20,)'/%. Then, the conductor attenua-
tion constant is given by [5]

RSZfig,,dl
i 2029[/5 (ve,)” dxdy

(16a)

o
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where ig, is the surface current density in the region » and
the line integrals are carried out on all conductor surfaces.
However, the calculation of a, based on the above formula
is complex and requires relatively long computation time.
On the other hand, a formula called the incremental induc-
tance rule for attenuation calculation was derived from the
relation between the magnetic energy and line inductance
[6] as
R aL

s

®= 2ueZ 7 dn,

(16b)

where p, is the magnetic permeability in vacuum, d/dn,
is the normal derivative to the conductor surface, and L is
the line inductance.

In the TEM wave approximation, the line inductance of
a nonmagnetic transmission line is the same as that of a
line after removing dielectric materials. Therefore,

1
L= (17)

vgC,

At high frequencies, each conductor surface has a layer of

skindepth
7 \:
8, =
WO,

and the line inductance is increased to L’, which can be
estimated only by decreasing the cross-sectional dimen-
sions by half a skin depth from each surface [6]. The
increase of the line inductance is then given by

(18)

v

Al 1 1{1 1 L\ 8, 19)
I oI =§ i |2

Instead of the derivative formula (16b), therefore, we pro-
pose a difference formula for the simpler computation of

C
a,= il 1 (neper/unit length).  (20)
AGY

This formula is also preferred when the total field energy is
estimated in the process of analysis. The ratio C, /Cy is a
convenient form to cancel the errors of C, and Cj due to
the variational formulation and numerical computation.

IV. ProxiMITY EFFECTS AND MICRO-COPLANAR
STRIP LINES

The rectangular boundary division method enables us to
estimate the transmission characteristics, in particular, the
conductor attenuation constant, of the thick-strip micro-
strip lines near ground plane on MMIC’s.

Fig. 2 shows the four divided regions with rectangular
boundaries to be analyzed. A large outer conductor box
(a =100w) 1s considered here for the purpose of analysis.
Typical structural parameters in the case of GaAs MMIC’s
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€, =12.7 (GaAs)

h =100 pm, 150 pm, and 200 pm
t=15pm, 2.0 pm

0,=10""S/cm (GaAs) ‘
0, =4.17x10° S/cm (Au)

fo =10 GHz.

The rapid change of electric fields at the strip conductor
edge has to be considered in practice, and the number of
spline knots must be large near the edges [3]. The quanti-
ties m, and m, are usually taken as 20, and 2/3 of them
have to be located within a distance of 10w from a
conductor edge.

Fig. 3 shows one of the proximity effects, that is, the
expected decrease of the characteristic impedance of MS
lines for decreasing separation s. Figs. 4 and 5 show the
proximity effects on the guide wavelength and attenuation
of MS lines, respectively.

As a natural consequence of establishing the analysis
method for the proximity effects, we propose the third
type of transmission lines for MMIC’s, shown in Fig. 1(c),
which we call micro-coplanar strip lines (MCS lines). A
feature of MCS lines is to keep the characteristic imped-
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Fig. 7. The ratio of guide wavelength to free-space wavelength A/ X, of
50-Q MCS lines versus s.

ance at a constant value by adjusting the strip width w
against specified values of s. MCS lines can be designed by
the rectangular boundary division method, can easily be
used in shunting elements as CPW [7], have a low-loss
property as MS lines, and can be transformed to either MS
lines or CPW.
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Effects of ground plane on the attenuation constant of (a) MCS
lines and (b) CPW with the same characteristic impedance.

Fig 9

Fig. 6 shows the designed strip width w of MCS lines for
keeping the 50-Q impedance against specified values of
separation s. The quantity w, is the initially designed strip
width for 50-2@ MS lines. Fig. 7 shows the ratio of guide
wavelength to free-space wavelength A /A, of 50-@ MCS
lines against s. Fig. 8 shows the conductor attenuation
constant of 50- MCS lines at frequency f (GHz) using
gold as the strip conductor material. Fig. 9 indicates the
effects of a ground plane on the attenuation constant of
MCS lines and CPW with the same characteristic imped-
ance.
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V. APPROXIMATE POLYNOMIAL FORMULAS

The above numerical relations can be expressed in sim-
ple approximate formulas by a curve-fitting procedure.
The polynomial formula given below represents the de-
signed strip width w of 50-@ MCS lines in terms of
separation s as shown in Fig. 6:

w 4
— =M Z a,u”
W o
where
u=In(s/w,)  (0.1<s/w,<10)

n, =1-0.28336((1,/h) —0.01)(1 - 3.6091u +1.3875u2)

a,=0.89358 a, =0.16458 a,=—0.72385x10"!
ay=—027323%10"2  4,=0.51618x10"2
72.4 < wy <146.5 100 <A <200 unit: pm
001<t/h<002 ¢,=127 g>10w,.

A similar polynomial formula to express the guide wave-
length shown in Fig. 7 has also been derived as follows:

A 2
Z o bu”
>\0 n)‘ng() t

where
1y=1+0.66771((¢/h)—0.01)
-(1-0.79582u +0.33722u?)
by = 0.36091 b,=—0.88745x10"7
b,=0.17982x 1072
72.4 < w,<146.5 100 < h < 200
0.01<1/h<0.02 €, =127

A discrepancy of about 1 percent has been recognized
between values obtained from these approximate formulas
and theoretical values derived from the above calculations
for the strip width w > (4 /20). The theoretical values of
the characteristic impedance and wavelength have errors of
about 1 percent due to the nature of the variational
method [3]. Though the experimental verification of MCS
line parameters has not been given here, an extreme case
of s =00 has been numerically checked with MS line
parameters.

unit: pm

g >10w,.

VL

It was shown in this paper that the rectangular boundary
division method could be applied to estimate the proximity
effects on the transmission characteristics of thick-strip
MS lines on a high-dielectric-constant substrate such as
GaAs, and to design structural parameters of newly pro-
posed MCS lines. Part of MS lines can be easily
transformed to MCS lines wherever the ground plane
approaches the strip conductor. Some of numerical results
were approximately expressed as polynomial formulas. A
new form of the incremental inductance rule was in-
troduced for the easier calculation of attenuation constant.

CONCLUSIONS
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APPENDIX

For convenience, all unknown parameters are expressed
in a unified fashion by the following vector:

{x}={xp,x1, " x,

={ P Praa> 10, > Q1m2> Pao»
3 Pam12 920" s Qamn ) - (A1)
When we define m as
: m=2ml+2m2+3
the energy given by (4) is rewritten as
1
U=—- V2+ K. x A2
solg 3+ £ LR @)
where
K Kll] 211+K31j+K4ij
K/I = Ki/
o o]
Z Hlnllm‘[lnj (O<l .]<M1)
n=1
[e o]
Z Hlnllmll/nj (0<1<M17
n=1
Kll]
M1+1< j< M2)
o0
)y H, I, I, (M1+1<i, j< M2)
n=1
0 (elsewhere)
o0
E H2n12n112nj (OSI SMl)
n=1
2OO
Z —H2/n12n112n/ (O<1<M1,
K — n=1
! M2+1< j< M3)
[e¢]
Z HZnIZmIan (M2+1<l <M3)
n=1
0 (elsewhere)
e <]
Z H3nI3m]3nJ (M1+1<l ]<M2)
=1
)IOO
Z - 3;113n113nj (M1+1<1<M2,
n=1
K31/ = . B
M3+1< j< M4)
o0
Z H3n13n113nj (M3 +l M4)
n=1
0 (elsewhere)
o]
2 H4nI4n114n/ (M2+] <l ] <M3)
=1
noo
Y Hyd,, i, (M2+1<i<M3,
K n=1
" M3+1< j< M4)
Z H4n 4n: 4nj (M3+]<l <‘M4)
n=1
0 (elsewhere)

M1=ml
M3=2ml+m2+2
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M2=ml+m2+1

MA=m

1 1 1
I 1 cos ‘flnxz( ) —Cos gln'x( ) cos glnxf ) —€O0s €1»1x1(+)1
e = n 1 O _ ()
gln xl( - 'xl(f)l X xz(
2
I = 1 cos glnx( ) ~cos gln X2 1 €os gln 1 ) —cos gln 1+1
1me = g2 D) 3 5 3
£ x® = x?2 X = x®
/ 1 [ cosé,y,xV —cosé,,x'V,  cosé,,xD —cosé,,x,
2m =T 1 1) 1 _ (D
3 x = xDy x( — xf
. 2 2
I 1 COS%_;,,X,O) —cos s?mxr 1 Cos g3}l'xl( ) —Cos £3nx1(+)1
Im 2 - 2 2 2) 2)
&3, X2 = %2 X% — xf
1 1 1 1
I 1 CQS {‘54)7x1( )_‘COS $4}1xl(—)] €os g“}lxl( ) —Cos £4nxt(+)1
A= 3 1 1 oM
%‘471 Xf V- xl(*)] 'x1(+1 X,
" 2 2 2 2
I = 1 Cos %4,,)(?,( )_COS 5471x1(—)1 cos g4ﬂxl( ) —cos g4nxt(+)1
dn T 22 2 (2) 2 (D
t411 xl( ) — X xl(+)1 X
0<xO<d  (i=0,--,n)
d+ws<sxP<d+w+s  (i=0,---,m2)
€
H =-—
1
" nwtanh(&,h)
€ €
H =— I{2 =T
> pwtanh(,,1) " nasinh(&,,t)
. = €3 _ €3
T NN TN
" nwtanh(&,,2) " nwsinh(&;,1)
€4

Han= nwtanh(&,,(b—h—1t))"

The subsidiary conditions given by (9) and (10) can be

rewritten as

ml ml
L 80p, ==V X 8Upy=-V
i=0 i=0
m?2 m2 (A3)
Z 8/(2)qu = V Z 8/(2)q2/ = V
;=0 J=0
where
1
3O == (x 0= x) (=1, mi=1)
1) 1 [¢3] [¢8] (€3] 1 [6Y] 1)
8 =§(x1 —Xp ) 8m1=5(xm1‘xm1—1)
) 1 (2) @ i
8 =5(xj+l——x]_1) (j=1,---,m2-1)

)

1
8 = E(xp_

1
2y _ 2) (@)
8r£12)— (xfn)2 Xinlfl)'

2
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Finally, a set of linear, simultaneous, inhomogeneous
equations to be solved on a computer is given by

ZK,_/-xj+>\xj = 0 (i=0,--,m)
j=0
mi
Z‘S_/'(l)x,i ==V
j=0
m2 .
) Z 6,-(2))?;+M1+1 =V (A4)
j=0
ml
Z 8_/'(1)xj+M2+1 ==V
j=0
m?2
8j(2)xj+M3+1= vV
j=0
where
AL O<igs Ml
N Ay, Ml+l<gig< M2
A, M2+1<i< M3
Ags M3+1<i< M4.
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